

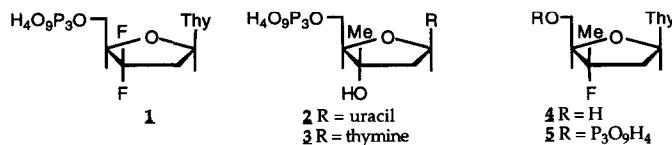
SYNTHESIS AND CRYSTAL STRUCTURE OF 3'-FLUORO-3'-METHYL-2',3'-DIDEOXYTHYMIDINE. INHIBITORY PROPERTIES OF 3'-FLUORO-3'-METHYL-2',3'-DIDEOXYTHYMIDINE-5'-TRIPHOSPHATE IN THE SYNTHESIS OF DNA IN CELL-FREE MEDIA

Anatoly D. Shutalev, Igor E. Mikerin, Boris M. Arshava, Antonia A. Nikitenko, Yuri E. Raifeld*

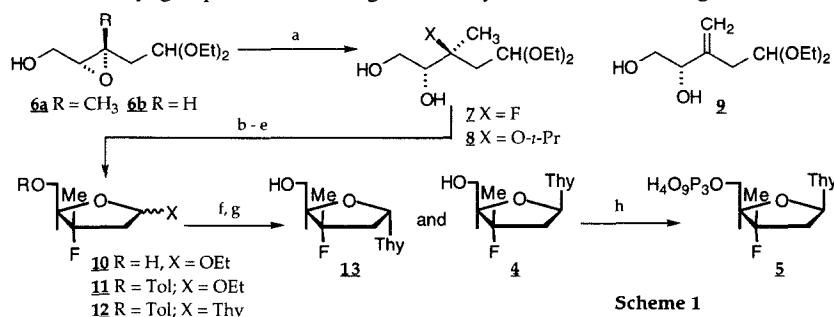
Joint Laboratory of Carbohydrates and Nucleoside Synthesis
Institute of Fine Chemical Technology and JV "Angarex"
Moscow 117571, Russia

Galina Ya Vid, Ving J. Lee*†

Medical Research Division, American Cyanamid,
Pearl River, New York 10965 USA


Galina V. Gurskaya^a, Lubov S. Viktorova^a, Maxim V. Jas'ko^a, Dmitzy G. Semizarov^a, Valery E. Zavodnik^b

^aInstitute of Molecular Biology RAS and ^bInstitute of Physical Chemistry,
Moscow 117915 Russia


Abstract The synthesis, physicochemical properties and chain-termination properties of 3'-fluoro-3'-methyl-2',3'-dideoxythymidine is described. The synthesis was accomplished by the coupling of bis(TMS)thymine with 3-fluoro-3-methyl-2,3-dideoxy-D-erythro-pentose which is obtained from non-carbohydrate precursors.

Select 3'-substituted-2',3'-dideoxynucleoside-5'-triphosphates have been shown to be effective inhibitors of HIV reverse transcriptase; notably, the 5'-triphosphates of 3'-azido-2',3'-dideoxythymidine, 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine and 2',3'-dideoxy-2',3'-didehydrothymidine are the most potent.¹⁻³ However, reports on the activity of 3',3'-disubstituted-2',3'-dideoxynucleoside-5'-triphosphates in DNA-synthesis are scarce. It was reported⁴ that 3',3'-difluoro-2',3'-dideoxythymidine-5'-triphosphate (**1**) is a weak inhibitor of human γ -DNA polymerase and HIV reverse transcriptase, but the molecular mechanism of inhibition was not described. Similarly, 3'-methyl-2'-deoxyuridine-5'-triphosphate (**2**)⁵ and 3'-methylthymidine-5'-triphosphate (**3**)⁶ showed weak inhibitory activity in DNA synthesis catalyzed by various DNA polymerases and reverse transcriptases, by the virtue there was no incorporation into the DNA chain. A strict interpretation for the absence of substrate **2** (*i.e.*, terminator) incorporation is complicated by the fact that it contains uracil, a nucleic base which is not a constituent of DNA. In contrast, X-ray crystallographic analysis of triphosphate **3** had shown it to have a significantly different conformation from that of known chain terminators.⁶ Thus, the absence of chain-terminator properties for **3** may be conformational in nature.

In furtherance of the structure-inhibitor investigations, we synthesized 3'-fluoro-3'-methyl-2',3'-dideoxythymidine (3'-methyl-FLT, **4**) and investigated its crystal structure, as well as the properties of 3'-methyl-FLT-5'-triphosphate (**5**) in some cell-free DNA-polymerase systems.

Chemistry. The synthesis of nucleoside **4** commences with *(3R,4R)*-5-hydroxy-3-methyl-3,4-epoxy-pentanal diethyl acetal (**6a**), which was obtained in 4 steps from 3-methyl-2-butenal.^{7,8} We envisioned that regioselective epoxide cleavage of **6a** with bis(*iso*-propoxy)titanium difluoride⁹ could afford 3-fluoro-3-methyl-2,3-dideoxy-D-*erythro*-pentose diethyl acetal (**7**). We have previously reported that bis(*iso*-propoxy)titanium difluoride [$Ti(O-i-Pr)_2F_2$] effectively converts 2,3-epoxyalcohols to fluorohydins.⁹ However, with acetal **6a**, three concomitant reactions occurred with two of the products due to nucleophilic ring cleavage: a) 3-fluoro-3-methyl-2,3-dideoxy-D-*erythro*-pentose diethyl acetal (**7**) and b) 3-methyl-3-O-isopropyl-2-deoxy-D-*erythro*-pentose diethyl acetal (**8**). The other product, 2,3-dideoxy-3-C-methylene-D-*glycero*-pentose diethyl acetal (**9**)⁷, is due to epoxide-allylic rearrangement (Scheme 1). As shown in Table 1, the yield of acetal **9** is almost independent of reaction conditions; however, the relative ratio of acetals **7** and **8** is dependent on reaction temperature. Thus, optimal yield (40%) of fluorohydrin **7** occurs at high temperatures. These results are similar to that for the cleavage of *(3R,4R)*-5-hydroxy-3,4-epoxypentanal diethyl acetal (**6b**),⁹ but there was complete absence of C-4 addition products with epoxide **6a**. Thus, the methyl group enhances the regioselectivity of the oxirane cleavage.

a) $Ti(O-i-Pr)_2F_2$, C_6H_6 ; b) 1% EtOH - HCl; c) $p\text{-CH}_3C_6H_4COCl$ - C_5H_5N , d) CH_3COOH - HCl; e) bis(TMS)thymine, f) CH_3ONa - CH_3OH , g) silica gel chromatography; h) $POCl_3$ - pyrophosphate

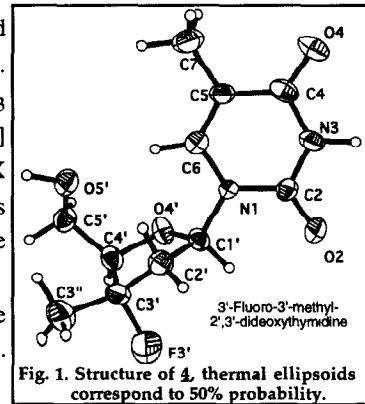
Table 1. Ring Cleavage of Epoxy Alcohol **6 by $Ti(O-i-Pr)_2F_2$ in Benzene**

Reaction Conditions				Composition of mixture, %		
Acetal 6 - Ti- Reag. Ratio	Temp (°C)	Time (hrs)	Conversion (%)	(7)	(8)	(9)
1	10	1.5	94	14	70	16
1.5	15	1.0	96	19	52	29
2	20	1.0	>98	25	45	30
2	30	1.0	>98	28	40	31
2	80	0.5	>98	38	42	20

The cyclization of acetal **7** to the anomeric furanosides **10** (90%) was achieved in dichloromethane at 20°C in the presence of 0.001% ethanolic hydrogen chloride with formation of minimal amounts (2-3%) of the corresponding pyranoside. Coupling of the p-toluoxy furanoside **11** with bis(trimethylsilyl)thymine was performed in the presence of trimethylsilyl triflate in acetonitrile. The anomeric mixture **12** (35:65, *per* NMR) was deprotected with methanolic sodium methoxide (83%) to give nucleoside **4** and the α -anomer **13**, separable by column chromatography on silica gel. Trisphosphorylation of **4** was accomplished with phosphorus oxychloride - bis(tributylammonium)pyrophosphate, according to the procedure of Ludvig to afford **5**.¹⁰

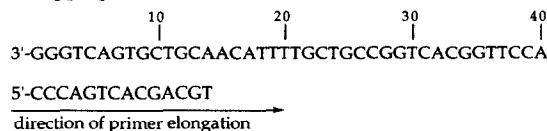
NMR studies. The composition of oxirane cleavage products was determined by ^{13}C -NMR spectroscopy by using the resonances for C-1, C-2 and C-4. Data for allylic alcohol **9** were from an earlier publication⁷, while 1H and ^{13}C NMR resonance assignments for **7** and **8** were determined on isolated compounds. The location of the

fluoro- or isopropoxy- substituent was determined by comparison of the chemical shifts in ^{13}C NMR spectra with calculated values based on the additivity factors obtained from analogous compounds with C-3 methyl group.¹¹ The incremental shift values used for the substitution OH \rightarrow F and OH \rightarrow O-*i*-Pr are based on literature substituent value increments for aliphatic compounds.¹² Typically, the experimental values of the chemical shifts deviated from the calculated values by 1-3 ppm. For acetal **7**, the site of fluorination was also aided by the presence of additional spin-spin couplings (SSCC) in the ^1H and ^{13}C NMR spectra.¹³


Cyclization of **7** to the furanosides **10** was readily identified by the carbon resonances for C-4 (85-88 ppm) and C-2 (45-47 ppm).¹⁴ The corresponding signals for the pyranosides, which were obtained in significant amount at higher concentration of HCl (>0.1%), have chemical shifts at 75-77 ppm (C-4) and 38-40 ppm (C-2). The anomeric configuration of the furanosides was determined on the basis of NMR spectra correlations which were previously reported from these laboratories.¹⁴

The anomeric configuration of **4**, as determined by NMR spectroscopy, is based on spin-spin coupling analyses and correlations between SSCC and torsional angles based on the Karplus equation, with correction for the electronegativity of the substituents.^{15,16} Significant are the low SSCC values (<2 Hz) observed in a narrow range of torsional angles (80° to 100°). The presence of SSCC values in the spectra of the nucleosides infers a low conformational mobility for these molecules and the probable existence of one conformer. Since $J_{\text{C}(\text{1}')\text{F}} \leq 1^\circ$ for the nucleosides **4**, **12** and **13**, as well for the glycosides **10** and **11**, it infers a torsional angle (C1'-C2'-C3'-F) *ca.* 90°, which points definitely to *S*-conformation of the furanose ring with an *exo*-orientation of the C(3') atom (for N-C(2)-*endo* conformation this angle is 140-150°). The values of all possible torsion angles was obtained by conformational analyses. The correlation of experimental SSCC with the calculated values, based on the Karplus equations for α and β anomers in various conformations, further confirmed the *S*-conformation of the furanose ring in nucleosides **13** and **4**. The $J_{1,2}$ and $J_{1,2'}$ values lead to assigning α and β configuration to the nucleosides **4** and **13**, respectively. The results were further confirmed by X-ray studies.

X-ray studies confirmed the *anti*-orientation of the N-glycoside bond of 3'-methyl-FLT **4** with the torsional angle X (C2-N1-C1'-O4') at -127.3°. This value is similar to those observed with analogs containing a C(3')-CH₃ unit; for example, 1-(3'-methyl-2'-deoxyribofuranosyl)thymine [dT(3'-Me)] (X = -116.6°)¹⁰ and 1-(3'-methyl- β -D-ribofuranosyl)cytosine [C(3'-Me)] (X = -130.9°).¹¹ The *gauche* conformation of the C4'-C5' exocyclic bond is consistent with the torsional angle γ (O5'-C5'-C4'-C3') in **4** at 56.8°, while in dT(3'-Me) and C(3'-Me) it is 50.1° and 61.7°, respectively.


The conformation of the furanose ring of **4** can be described by the phase angle of pseudo-rotation $P = 173.0^\circ$ and degree of pucker $\psi_m = 38.4^\circ$. This corresponds to the C2'-*endo*-C3'-*exo*-($^2\text{T}_3$) conformation, with C-2' and C-3' deviating from the plane defined by C1'-C4'-O4' at a distance of 0.414 Å and 0.192 Å, respectively. For comparative purposes, the conformation of the sugar unit in dT(3'-Me) - C2'-*endo*-C1'-*exo* ($^2\text{T}_1$, $P = 157.5^\circ$, $\psi_m = 38.0^\circ$) and C(3'-Me) - C2'-*endo*-C3'-*exo* ($^2\text{T}_3$, $P = 167.0^\circ$, $\psi_m = 37.8^\circ$). Thus, in all the examined compounds conformation of the sugar rings are in the *S*-configuration.

These results are similar to the literature data^{17,18} which demonstrate that pyrimidine nucleosides having C3'-methyl groups, irrespective of the base, have the same *anti* conformation in relation to the N-glycoside bond. That

is, *gauche* conformation around the exocyclic C4'-C5' bond and *endo* orientation of C2' carbon atom (S-population) in the furanoside unit. In the nucleosides, which have S-conformation of the carbohydrate moiety, either nucleic base or the C(3')-methyl carbon exist in the equatorial position, which minimizes steric hinderance between the bulky substituents.

Biological Results and Discussion. DNA polymerase inhibitory activity of 3'-fluoro-3'-methyl-2',3'-dideoxythymidine-5'-triphosphate **5** was determined in cell-free systems using various DNA polymerases in a system with an incomplete set of substrates. A model consisting of the DNA template of the M13 mp 10 phage and synthetic deoxytetradecanucleotide was used (Scheme 2). To this assay system was added nucleoside **5** and the appropriate DNA polymerase. The template-primer was chosen so that select links in the growing DNA chain should incorporate thymidine-5'-triphosphate residues (the controls were carried out in the presence of thymidine-5'-triphosphate (**3**) - Tracks 7, 11, 15 and 19) (Fig. 2). The absence of incorporation of **5** into the DNA chain is illustrated by the absence of the appropriate zone in tracks 4-5, 8-9, 12-13, 16-17, 20-21.

Scheme 2. Primer-Template Complex

As shown in Figure 2, the gel illustrates the comparative evaluation of **5** in five DNA preparations: the reverse transcriptase from the avian myeloblastosis virus (AMV) (tracks 2-5), and human immunodeficiency virus (tracks 6-9), DNA polymerases α and ϵ from human placenta (tracks 10-13 and 14-17, correspondingly) and DNA polymerase I (Klenow fragment) (track 18-21). It is clear from the gels, that none of these preparations incorporate **5** into the primer. The presence of additional zones of tridecanucleotide and dodecanucleotide in the tracks 14, 16-18 and 20-21 can be explained by the adventitious 3' \rightarrow 5'-exonuclease activity of DNA polymerases ϵ and I, which occurs in the absence of substrates in the reaction medium. The tridecanucleotide band in track 13 is explained by the mix activity of DNA polymerase α . The DNA polymerases selected include high specificity enzymes (DNA polymerases α and ϵ), as well as low specificity enzymes (the reverse transcriptases).^{19,20} DNA-polymerase I was used in the control preparation. The lack of elongation of the oligonucleotide chain for all five preparations demonstrated clearly that **5** is not a terminator substrate for these enzymes. Thus, the polymerase activity of nucleotide **5** is similar to that for nucleosides **2-3**.

EXPERIMENTAL

NMR spectra were recorded with either Bruker AM-360 (360.13 MHz, ^1H ; 90.56 MHz, ^{13}C) or Varian Gemini-300 (300 MHz, ^1H ; 75 MHz, ^{13}C) spectrometers in either acetone- d_6 , methanol- d_4 or deuterium oxide at 20°C (^1H) and 30°C (^{13}C). Optical rotations were determined with a Jasko polarimeter in methanol. Thin layer chromatography was accomplished on Silufol-254 plates (Czechoslovakia) with spot detection by UV or by heating and column chromatography was carried out on silica gel 60 (63-100 μ , Merck).

3-Fluoro-3-methyl-2,3-dideoxy-D-*erythro*-pentose diethyl acetal (7). A suspension of 7.44 g (60 mmol) of titanium (IV) fluoride and 24 g of powdered potassium carbonate in 200 ml of dry benzene was treated with 17.04 g (60 mmol) of titanium (IV) isopropoxide and stirred at ambient temperature for 0.5 h. The resultant mixture was heated to reflux and a solution of 6.12 g (30 mmol) of (3*R*,4*R*)-5-hydroxy-3-methyl-3,4-

epoxypentanal diethyl acetal (**6a**) in 20 ml of dry benzene was added dropwise to the reaction. After stirring for 0.5 h, the reaction was cooled to 5–10°C and quenched with sat. aqueous potassium carbonate (100 ml). The precipitate was filtered and the filtercake washed thoroughly with diethyl ether (5 x 100 ml). The organic phase was dried (K_2CO_3) and concentrated *in vacuo*. NMR analysis of the crude mixture showed a composition of **7** (38%), **8** (42%) and **9** (20%)⁷, which was separated by column chromatography (CH_2Cl_2). Fluorohydrin **7** (the last spot) (2.3 g, 35%): R_f 0.14 (chloroform-methanol, 10:1), $[\alpha]_D^{20} +15.2^\circ$ (*c* 1.0, CH_3OH); ^{13}C NMR (90 MHz, CD_3COCD_3) δ 15.50 (OCH_2CH_3), 20.81 ($^2J_{\text{CF}} = 24.1$ Hz, C(3)-CH₃), 41.50 ($^2J_{\text{CF}} = 21.6$ Hz, C-2), 61.16 and 61.38 (OCH_2 's), 62.70 ($^3J_{\text{CF}} = 5.0$ Hz, C-5), 76.63 ($^2J_{\text{CF}} = 26.2$ Hz, C-4), 97.13 ($^1J_{\text{CF}} = 170.6$ Hz, C-3), 100.04 ($^3J_{\text{CF}} = 6.0$ Hz, C-1). Anal. Calc. for $\text{C}_{10}\text{H}_{21}\text{O}_4\text{F}$: C, 53.56; H, 9.44; F, 8.47. Found: C, 53.38; H, 9.40; F, 8.55.

Ethyl 3-fluoro-3-methyl-2,3-dideoxy-D-*erythro*-pentofuranosides (10). A solution of 0.63 g (2.8 mmol) of acetal **7** in dichloromethane (20 ml) was treated with 1% ethanolic hydrogen chloride (0.01 ml). The reaction, which was monitored by TLC, was complete in 0.5 h and neutralized with solid potassium bicarbonate. The precipitate was filtered and the filtrate was concentrated *in vacuo* and purified by column chromatography (CHCl_3). Furanoside **10** was obtained as an anomeric mixture (0.45 g, 90%): R_f 0.65 and 0.80 (chloroform-methanol, 10:1). Alpha anomer **10a**: ^{13}C NMR (90 MHz, CD_3COCD_3) δ 15.5 (OCH_2CH_3), 20.5 ($^2J_{\text{CF}} = 26.6$ Hz, C(3)-CH₃), 46.6 ($^2J_{\text{CF}} = 21.4$ Hz, C-2), 61.9 ($^3J_{\text{CF}} = 8.8$ Hz, C-5), 63.3 (OCH_2), 86.5 ($^2J_{\text{CF}} = 27.3$ Hz, C-4), 101.5 ($^2J_{\text{CF}} = 175.5$ Hz, C-3), 103.6 ($^3J_{\text{CF}} = 0.9$ Hz, C-1). Beta anomer **10b**: ^{13}C NMR (90 MHz, CD_3COCD_3) δ 15.5 (OCH_2CH_3), 19.6 ($^2J_{\text{CF}} = 25.4$ Hz, C(3)-CH₃), 46.3 ($^2J_{\text{CF}} = 22.0$ Hz, C-2), 62.8 ($^3J_{\text{CF}} = 10.3$ Hz, C-5), 64.3 (OCH_2), 87.8 ($^2J_{\text{CF}} = 24.1$ Hz, C-4), 103.4 ($^2J_{\text{CF}} = 172.3$ Hz, C-3), 104.5 ($^3J_{\text{CF}} = 0.9$ Hz, C-1). Anal. Calc. for $\text{C}_8\text{H}_{15}\text{O}_3\text{F}$: C, 53.92; H, 8.49; F, 10.66. Found: C, 54.03; H, 8.44; F, 10.58.

Ethyl 3-fluoro-3-methyl-5-O-(p-toluoyl)-2,3-dideoxy-D-*erythro*-pentofuranosides (11). A cold (-15°C) solution of 1.23 g (6.9 mmol) of furanosides **10** in 10 ml of dry pyridine, was treated with 1.17 g (7.6 mmol) of p-toluoyl chloride. The resultant mixture was stirred at ambient temperature for 16 h and then concentrated *in vacuo*. The residue was dissolved in 60 ml of chloroform and the solution was washed sequentially with water (5 x 25 ml), sat. aqueous sodium bicarbonate (25 ml) and water (25 ml) and dried with anhydrous Na_2SO_4 . After removal of solvent, the oily residue was purified by column chromatography over silica gel (50 g) (hexane-ethyl acetate, 25:1). There was obtained 0.92 g (45%) of **11**; alpha anomer **11a**: ^{13}C NMR (90 MHz, CD_3COCD_3) δ 15.41 (OCH_2CH_3), 20.7 ($^2J_{\text{CF}} = 27.5$ Hz, C(3)-CH₃), 46.4 ($^2J_{\text{CF}} = 21.8$ Hz, C-2), 63.7 ($^3J_{\text{CF}} = 7.1$ Hz, C-5), 64.0 (OCH_2), 83.1 ($^2J_{\text{CF}} = 30.4$ Hz, C-4), 101.3 ($^1J_{\text{CF}} = 180.0$ Hz, C-3), 103.7 ($^3J_{\text{CF}} \leq 1.0$ Hz, C-1). Beta anomer **11b**: ^{13}C NMR (90 MHz, CD_3COCD_3) δ 15.40 (OCH_2CH_3), 19.8 ($^2J_{\text{CF}} = 25.7$ Hz, C(3)-CH₃), 45.8 ($^2J_{\text{CF}} = 22.5$ Hz, C-2), 64.6 ($^3J_{\text{CF}} = 10.7$ Hz, C-5), 64.1 (OCH_2), 84.3 ($^2J_{\text{CF}} = 27.2$ Hz, C-4), 103.3 ($^1J_{\text{CF}} = 173.2$ Hz, C-3), 104.8 ($^3J_{\text{CF}} \leq 1.0$ Hz, C-1). Anal. Calc. for $\text{C}_{16}\text{H}_{21}\text{O}_4\text{F}$: C, 64.85; H, 7.14; F, 6.41. Found: C, 64.99; H, 7.12; F, 6.53.

1-[3-Fluoro-3-methyl-5-O-(p-toluoyl)-2,3-dideoxy-D-*erythro*-pentofuranosyl]thymine (12). A solution of 0.156 g (0.525 mmol) of **11** and 0.288 g (1.065 mmol) of bis(trimethylsilyl)thymine in 3 ml of dry acetonitrile was treated with 0.20 ml (1.04 mmol) trimethylsilyl triflate. The resultant solution was kept at ambient temperature for 2.5 h, cooled to 0° and quenched with sat. sodium bicarbonate (4 ml). The mixture was extracted with chloroform (3 x 5 ml), washed with water (2 x 5 ml) and dried over Na_2SO_4 . After evaporation of the solvent, the residue was separated by column chromatography over silica gel (15 g) (CHCl_3), 0.125 g (63.3%);

alpha anomer **12a**: ^{13}C NMR (90 MHz, CD_3COCD_3) δ 19.4 ($^2J_{\text{CF}} = 25.0$ Hz, C(3)- CH_3), 43.6 ($^2J_{\text{CF}} = 22.1$ Hz, C-2), 64.2 (C-5), 84.8 ($^3J_{\text{CF}} \leq 0.5$ Hz, C-1), 86.5 (C-4), 103.0 ($^1J_{\text{CF}} = 171.8$ Hz, C-3). Beta anomer **12b**: ^{13}C NMR (90 MHz, CD_3COCD_3) δ 19.3 ($^2J_{\text{CF}} = 25.0$ Hz, C(3)- CH_3), 44.9 ($^2J_{\text{CF}} = 22.6$ Hz, C-2), 64.3 (C-5), 84.5 ($^3J_{\text{CF}} \leq 0.5$ Hz, C-1), 86.5 (C-4), 102.7 ($^1J_{\text{CF}} = 172.0$ Hz, C-3). Anal. Calc. for $\text{C}_{19}\text{H}_{21}\text{N}_2\text{O}_5\text{F}$: C, 60.63; H, 5.62; N, 7.44; F, 5.05. Found: C, 60.47; H, 5.66; N, 7.51; F, 5.11.

3'-Fluoro-3'-methyl-2',3'-dideoxythymidine (4) and 1-[3'-fluoro-3'-methyl-2',3'-dideoxy- α -D-*erythro*-pentofuranosyl]thymine (13). A solution of **12** (0.371 g) in absolute methanol (18 ml) was treated with 0.2 M methanolic sodium methoxide (10 ml). The mixture was maintained at 24° for 4 h, neutralized with DOWEX 50W x 1 (H^+ -form) ion exchange resin, filtered and concentrated *in vacuo*. The residue was dissolved in chloroform and chromatographed over silica gel (20 g) using a gradient of acetone (100:0 → 8:1 → 6:1). There was obtained 0.136 g (53.5%) of **4**: mp 200-202° (dec.) (ethanol); R_f 0.20 (hexane-ethyl acetate, 1:1); $[\alpha]_D^{20} +8.88^\circ$ (*c* 0.83, methanol); ^1H NMR (300 MHz, CD_3OD) δ 1.58 (d, 3H, $^3J_{\text{HF}} = 22.2$ Hz, C(3')- CH_3), 1.86 (s, 3H, = CCH_3), 2.19 (ddd, 1H, $^3J_{\text{HF}} = 40.6$; $^2J_{2,2'} = 13.6$ Hz, H-2), 2.43 (ddd, 1H, $^3J_{\text{HF}} = 16.1$ Hz, H-2'), 3.70 (ddd, 1H, $J_{5,5'} = 12.1$ Hz, H-5), 3.79 (ddd, 1H, $^4J_{\text{HF}} = 2.1$ Hz, H-5'), 4.08 (ddd, 1H, $^3J_{\text{HF}} = 25.0$; $J_{4,5} = 2.5$; $J_{4,5'} = 2.1$ Hz, H-4), 6.27 (dd, 1H, $^4J_{\text{HF}} \leq 0.5$; $J_{1,2} = 9.7$; $J_{1,2'} = 5.3$ Hz, H-1), 8.05 (s, 1H, H-6); ^{13}C NMR (90 MHz, CD_3COCD_3) δ 18.7 ($^2J_{\text{CF}} = 25.3$ Hz, C(3')- CH_3), 45.7 ($^2J_{\text{CF}} = 21.3$ Hz, C-2), 61.9 (C-5), 84.2 (C-1), 90.2 ($^2J_{\text{CF}} = 24.0$ Hz, C-4), 102.9 ($^1J_{\text{CF}} = 170.2$ Hz, C-3). Later fractions afforded nucleoside **13** (74 mg, 29%): ^1H NMR (300 MHz, CD_3OD) δ 1.56 (d, 3H, $^3J_{\text{HF}} = 22.3$ Hz, C(3')- CH_3), 1.87 (s, 3H, = CCH_3), 2.31 (ddd, 1H, $^3J_{\text{HF}} = 21.9$; $J_{2,2'} = 15.1$ Hz, H-2), 2.43 (ddd, 1H, $^3J_{\text{HF}} = 41.2$ Hz, H-2'), 3.61 (ddd, 1H, $^4J_{\text{HF}} = 2.1$; $J_{5,5'} = 12.6$ Hz, H-5), 3.71 (ddd, 1H, $^4J_{\text{HF}} = 2.9$ Hz, H-5'), 4.44 (ddd, 1H, $^3J_{\text{HF}} = 21.8$; $J_{4,5} = 1.1$; $J_{4,5'} = 3.2$ Hz, H-4), 6.25 (dd, 1H, $^4J_{\text{HF}} \leq 0.5$; $J_{1,2} = 1.6$; $J_{1,2'} = 7.6$ Hz, H-1), 7.55 (s, 1H, H-6); ^{13}C NMR (90 MHz, CD_3COCD_3) δ 19.8 ($^2J_{\text{CF}} = 24.7$ Hz, C(3')- CH_3), 43.8 ($^2J_{\text{CF}} = 21.5$ Hz, C-2), 61.5 ($^3J_{\text{CF}} = 12.1$ Hz, C-5), 84.8 (C-1), 87.7 ($^2J_{\text{CF}} = 25.2$ Hz, C-4), 103.4 ($^1J_{\text{CF}} = 170.7$ Hz, C-3). Anal. Calc. for $\text{C}_{11}\text{H}_{15}\text{N}_2\text{O}_4\text{F}$: C, 51.16; H, 5.85; N, 10.85; F, 7.36. Found: C, 51.37; H, 5.92; N, 10.78; F, 7.22.

3'-Fluoro-3'-methyl-2',3'-dideoxythymidine-5'-triphosphate (5). A solution of 40 mg (0.16 mmol) of 3'-fluoro-3'-methyl-2',3'-dideoxythymidine (**4**) in 1 ml of triethyl phosphate was added, at 0°C, 50 μL (0.54 mmol) phosphorus oxychloride. The mixture was stirred for 2 days at +5°C, then a cold mixture (5°C) of 0.5 M bis(tributylammonium)pyrophosphate in DMF (2 ml) and tributylamine (130 μL , 0.54 mmol) was added. The reaction mixture was stirred for 40 min. at 20° and then neutralized with 1 M triethylammonium bicarbonate to pH 7.5, evaporated at 20°. The solid in 400 mL of water was applied onto a DEAE-column (DE-32, Whatman, HCO_3^- form, 13 x 4 cm) and the column eluted with a linear gradient of ammonium bicarbonate, pH 7.5 (0 → 0.4 M; 1L). Triphosphate **5** was eluted with 0.25 M buffer. The fractions containing **5** were evaporated at 20°, and reevaporated with 10% EtOH (5 x 10 ml) and freeze-dried (23 mg, 26%): ^1H NMR (360 MHz, D_2O), δ 1.83 (d, 2H, $J_{\text{Me,F}} = 23$ Hz, C(3')-Me), 1.94 (s, 3H, =CMe), 1.96-2.70 (m, 2H, H-2'), 4.17 (m, 2H, H-5'), 4.38 (dm, 1H, $J_{\text{H,F}} = 27$ Hz, H-4'), 6.31 (dd, 1H, $J = 9.5$; 5.5 Hz, H-1') and 7.83 (s, 1H, H-6).

X-ray studies. Crystals for X-ray crystallographic analysis were grown from a saturated solution of **4** in ethanol by slow evaporation of the solvent at 4°C. The space group of crystals was $P2_12_12_1$, with $a = 5.579(1)$; $b = 11.435(2)$; $c = 19.186(4)$ Å; $z = 4$. The parameters of unit cell and the intensity of reflections were measured on the Syntax P1 diffractometer (e/2e - scanning, $\text{MoK}\alpha$ radiation) and the data was corrected for Lorentz and polarization factors. Intensities of 625 independent reflections with $I > 3\sigma(I)$ were used for the structural

investigations. The structure was solved by direct methods and refined by full-matrix least squares with anisotropic approximation for nonhydrogen atoms. Coordinates of the hydrogen atoms were determined from difference Fourier syntheses and refined with isotropic temperature factors. The final value of R factor was 2.8%. All the calculations were made with the SHELXTL program complex.

Cell-Free DNA Synthesis Studies. The DNA from M13pm10 phage was freshly isolated.²¹ Tetradecanucleotide primer (Scheme 2) was labeled at the 5'-position with T4 polynucleotide kinase (Amersham) by means of [γ -³²P]-ATP, 1500 Ci/mmol.²² After phenol extraction and resedimentation in ethanol, the [³²P]-oligonucleotide was reconstituted in water to 1 nmol/mL concentration and used for the hybridization reactions²³, catalyzed with DNA polymerases. The following polymerases were used: a) *E. Coli* DNA polymerase I, Klenow fragment (Amersham), b) DNA polymerases from human placenta α (A. Atrazhev, Institute of Molecular Biology, Moscow) and ϵ (D. Mozzerin, Institute of Molecular Biology, Moscow), c) avian myeloblastosis virus (AMV) reverse transcriptase (Omutninsk, Russia) and d) human immunodeficiency virus HIV-1 (T. Rosovskaya and R. Beabealashvili, Cardiology Center, Moscow).

The DNA M13pm10 was hybridized with [5'-³²P]-primer (0.75 μ M) in the appropriate buffers: 10 μ M tris-HCl, pH 7.9, 5 μ M MgCl₂, 1 μ M dithiothreitol (for DNA polymerase I); 10 μ M tris-HCl, pH 8.2, 5 μ M MgCl₂, 40 μ M KCl, 1 μ M dithiothreitol (for the reverse transcriptases); 10 μ M tris-HCl, pH 7.4, 6 μ M MgCl₂, 0.4 μ M dithiothreitol (for DNA polymerases α and ϵ).

The addition of 2'-deoxythymidine-5'-phosphate to the 3'-position of [5'-³²P]-primer was conducted in 6 μ L mixtures, containing the appropriate buffer, one of the enzymes (0.5 units of DNA polymerase I, 1 unit of both DNA polymerases α and ϵ , 3 units of reverse transcriptases), 3 nM primer-template complex, 10 μ M dTTP and the triphosphate 5 at different concentrations, as shown in Figure 2. The mixture was incubated for 20 min. at 37°C (10 min. at 20°C for DNA polymerase I) and then quenched by the addition of 2 μ L deionized formamide containing 0.1% Xylene Cyanole, 0.1% of Bromophenol Blue and 20 μ M EDTA, pH 8.0. The products were separated by electrophoresis in denatured 20% PAAG.

Figure 2. Autoradiography/PAGE analysis of [³²P]-tetradecanucleotide elongation catalyzed by DNA polymerases: avian myeloblastosis virus (AMV) reverse transcriptase (3 units) (2-5), and human immunodeficiency virus HIV-1 reverse transcriptase (3 units) (6-9), DNA polymerase α (2 units) (10-13), DNA polymerase ϵ (1 unit) (14-17), DNA polymerase I, Klenow fragment (0.4 units) (18-21). Tracks: [³²P]-primer template complex (control) (1); the same and enzyme (2, 6, 10, 14, 18); the same and enzyme and 10 μ M dTTP (3, 7, 11, 15, 19); the same and enzyme and 10 μ M IV (4, 8, 12, 16, 10); the same and enzyme and 100 μ M IV (5, 9, 13, 17, 21).

REFERENCES

† Microcide Pharmaceuticals, Inc., 850 Maude Avenue, Mountain View, California 94043

1. Nasr, M.; Litterst, C.; McGowan, J. *Antiviral Research*, **1990**, *14*, 125-148.
2. Herdewijn, P.; Bazarini, J.; De Clercq, E.; Pauwels, R.; Baba, M.; Broder, S.; Vanderhaege, H. *J. Med. Chem.*, **1987**, *30*, 1270-1278.
3. Balzarini, J.; Baba, M.; Pauwels, R.; Herdewijn, P.; De Clercq, E. *Biochem. Pharmacol.*, **1988**, *37*, 2847-2856.
4. Cheng, Y.-U.; Dutschman, G.E.; Bastow, K.F.; Sarngadharan, M.G.; Ting, R.Y.C. *J. Biol. Chem.*, **1987**, *262*, 2187-2189.
5. Mikhailov, S.N.; Padyakova, N. *Sh. Nucleosides and Nucleotides*, **1991**, *10*, 339-343.
6. Fedorov, I.I.; Kazmina, E.M.; Novicov, N.A.; Gurskaya, G.V.; Bochkarev, A.V.; Jasko, M.V.; Victorova, L.S.; Kukhanova, M.K.; Balzarini, J.; De Clercq, E.; Krayevsky, A.A. *J. Med. Chem.*, in press.
7. Raifeld, Yu.E.; Vid, G. Ya; Mikerin, I.E.; Arshava, B.M.; Nikitenko, A.A. *Carbohydrate Res.*, **1992**, *224*, 103-109.
8. The NMR spectra of **6** is given in Table 2. Its optical purity was determined by ^1H NMR analysis of its diastereomeric esters with the Mosher reagent (*cf.*, Dale, J.A.; Dull, D.L.; Mosher, H.S. *J. Org. Chem.*, **1969**, *34*, 2543-2549), (+)- α -methoxy- α -(trifluoromethyl)phenyl acetic acid. Quantitative measurements of the integrals of the H-5 and H-5' resonances, which have the largest difference in the chemical shifts for the diastereomeric esters and the least overlap with other resonances. The chemical shifts (δ), in CDCl_3 , of (*3R,4R*)-epoxy alcohol **6** were 4.326 (dd, J = 7; 12 Hz) and 4.570 (dd, J = 4.5; 12 Hz), while for (*3S,4S*)-enantiomer **6** they were 4.378 (dd, J = 6.8; 12 Hz) and 4.508 (dd, J = 4.4; 12 Hz). The *ee* was 94%.
9. Nikitenko, A.A.; Arshava, B.M.; Mikerin, I.E.; Raifeld, Yu. E.; Lee, V.J.; Lang, S.A. *Tetrahedron Lett.*, **1992**, *33*, 7087-7088.
10. Ludvig, I. *Acta Biochim. Biophys. Acad. Sci. Hung.*, **1981**, *16*, 131-133.
11. Raifeld, Yu. E.; Nikitenko, A.A.; Vid, G. Ya.; Arshava, B.M.; Mikerin, I.E.; Lee, V.J., submitted to *Tetrahedron* (1993).
12. Wehrly F.W.; Wirthlin, T. Interpretation of ^{13}C -NMR Spectra, Heyden, London, **1976**.
13. Stothers, J.B. Carbon-13 NMR Spectroscopy, Chapter 10, Academic Press, NY, **1972**.
14. Arshava, B.M.; Raifeld, Yu. E.; Makin, S.M. *Zh. Org. Khim.*, **1990**, *26*, 778-785.
15. Karplus, M. *J. Am. Chem. Soc.* **1963**, *85*, 2870-2875.
16. Abraham, R.J.; Cavalli, L.; Pachler, K.G.R. *Mol. Phys.*, **1966**, *11*, 471-475.
17. Gurskaya, G.V.; Javadova, G.M.; Mikhailov, S.N. *Crystal Structure Communication*, **1982**, *11*(4/A), 1253-1258.
18. Bochkarev, A.V.; Gurskaya, G.V.; Zhdanov, A.S.; Kaz'mina, E.M.; Fedorov, I.I. *Bioorg. Khim.* **1991**, *17*, 1094-1100.
19. Krayevsky, A.A.; Kukhanova, M.K. *Sov. Sci. Rev. D. Physicochem. Biol.*, **1990**, *9*, 179-242.
20. Krayevsky, A.A. *Zh. Org. Khim.* **1982**, *18*, 27-37.
21. Krayev, A.S.; *Mol. Biol.*, **1988**, *22*, 1164-1197.
22. Maniatis, T.; Fritch, E.; Sambruck, D. *Molekularnoye klonirovanie*, Moscow, Mir, **1984**.
23. Dyatkina, N.B.; Viktorova, L.S.; Mozzherin, D. Yu.; Atrazhev, A.M.; Rozenberg, S.G., Kukhanova, M.K.; Krayevsky, A.A. *Mol. Biol.*, **1991**, *25*, 1688-1700.

(Received in USA 14 December 1993; accepted 31 January 1994)